2020-2021 AUT Admission Test
 Mathematics (Sample)

< Multiple choice Questions >

1. [4 Points] Let $3^{x}=2020$. Simplify

$$
|x-6|+|x-8| .
$$

(1) $2 x-14$ (2) $14-2 x$ (3) 2
(4) -2
(5) $2-x$

Answer: 3
Since $3^{6}=729$ and $3^{7}=2187,6<x<7$, we have $|x-6|+|x-8|=(x-6)-(x-8)=2$.
2. [4 Points] Evaluate $\log _{2} 9 \times \log _{3} 4 \times \sqrt[3]{27}$.
(1) 4 (2) 6
(3) 8
(4) 10
(5) 12

Answer: 5

$$
\begin{gathered}
\log _{2} 9 \times \log _{3} 4 \times \sqrt[3]{27}=2 \log _{2} 3 \times 2 \log _{3} 2 \times 3 \\
=12
\end{gathered}
$$

3. [4 Points] Let a, b be the two solutions of the quadratic equation $3 x^{2}+4 x-3=0$. Find the value of $a \times b$.
(1) -3
(2) -1
(3) 1
(4) 3
(5) 4

Answer: 2
We have $a b=-\frac{3}{3}=-1$.
4. [6 Points] Find the sum of all integers satisfying

$$
x^{2}-3 x \leq 4
$$

(1) 6 (2) 7 (3) 8 (4) $9 \quad$ (5) 10

Answer: 4
By solving the quadratic equation $x^{2}-3 x-4=0$, one has $x=-1$ and $x=4$. hence integer solutions are $x=-1,0,1,2,3,4$, and the sum is 9 .
5. [6 Points] Find the value of

$$
\frac{1}{1 \cdot 3}+\frac{1}{2 \cdot 4}+\frac{1}{3 \cdot 5}+\frac{1}{4 \cdot 6} \cdots+\frac{1}{9 \cdot 11}
$$

(1) $\frac{18}{55}$
(2) $\frac{36}{55}$
(3) $\frac{72}{55}$
(4) $\frac{93}{55}$
(5) $\frac{10}{11}$

Answer: 2
Since $\frac{1}{n(n+2)}=\frac{1}{2} \cdot\left(\frac{1}{n}-\frac{1}{n+2}\right)$, we have

$$
\begin{aligned}
\frac{1}{1 \cdot 3}+\frac{1}{2 \cdot 4}+\frac{1}{3 \cdot 5} & +\frac{1}{4 \cdot 6} \cdots+\frac{1}{9 \cdot 11} \\
& =\frac{1}{2}\left[\left(1-\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\cdots\right. \\
+ & \left.\left(\frac{1}{9}-\frac{1}{11}\right)\right] \\
& =\frac{1}{2}\left[1+\frac{1}{2}-\frac{1}{10}-\frac{1}{11}\right]=\frac{36}{55}
\end{aligned}
$$

6. [6 Points] Find the value of

$$
\sin \left(\operatorname{arctg} 2-\operatorname{arctg} \frac{1}{2}\right)
$$

(1) $\frac{3}{4}$ (2) $\frac{2}{5}$
(3) $\frac{3}{5}$
(4) $\frac{4}{5}$
(5) $\frac{5}{6}$

Answer: 3
Let $A=\operatorname{arctg} 2, B=\operatorname{arctg} \frac{1}{2}$. Thensin $A=\cos B=$ $\frac{2}{\sqrt{5}}$ and $\sin B=\cos A=\frac{1}{\sqrt{5}}$. Hence

$$
\sin (A-B)=\sin A \cos B-\cos A \sin B=\frac{4}{5}-\frac{1}{5}=\frac{3}{5} .
$$

7. [6 Points] If the tangent line to the curve $y=x^{3}-$ $2 x^{2}+2$ at the point $(1,1)$ passes through $(0, a)$, find the value of a.
(1) 1
(2) $\frac{3}{2}$
(3) 2
(4) $\frac{5}{2}$
(5) 3

Answer: 3
Since $y^{\prime}=3 x^{2}-4 x$, the slope of the tangent line at $(1,1)$ is $y^{\prime}(1)=-1$. Hence the tangent line is $y-$ $1=-1(x-1)$. Since this line passes through $(0, a)$, $a-1=-1 \cdot(-1)=1$. Hence $a=2$.
8. [6 Points] If $\sin \theta \cos \theta=-\frac{4}{9}$, find the value of $\frac{\sin ^{2} \theta}{(1+\tan \theta)^{2}}$.
(1) $\frac{5}{9}$ (2) $\frac{7}{9}$
(3) $\frac{11}{9}$
(4) $\frac{16}{9}$
(5) $\frac{25}{9}$

2020-2021 AUT Admission Test
 Mathematics (Sample)

Answer: 4
From $(\sin \theta+\cos \theta)^{2}=1+2 \sin \theta \cos \theta$, we have $(\sin \theta+\cos \theta)^{2}=\frac{1}{9}$. Hence

$$
\begin{gathered}
\frac{\sin ^{2} \theta}{(1+\tan \theta)^{2}}=\frac{\sin ^{2} \theta \cos ^{2} \theta}{(\cos \theta+\sin \theta)^{2}}=\left(-\frac{4}{9}\right)^{2} \times 9 \\
=\frac{16}{9} .
\end{gathered}
$$

9. [6 Points] If $a+b=3, a b=1$ and $a>b$, calculate the value of $a^{2}-b^{2}$.
(1) $\sqrt{5}$
(2) 2
(3) $4 \sqrt{3}$
(4) $3 \sqrt{5}$
(5) 9

Answer: 4
From $(a-b)^{2}=(a+b)^{2}-4 a b=5$ and $a>b$, we have $a-b=\sqrt{5}$. Hence

$$
a^{2}-b^{2}=(a+b)(a-b)=3 \sqrt{5}
$$

10. [6 Points] A function on the real numbers given by

$$
f(x)=\left\{\begin{array}{c}
e^{a x}, \quad x<0 \\
-b x+c, \quad x \geq 0
\end{array}\right.
$$

is differentiable at $x=0$. Find $a+b+c$
(1) 1
(2) 2
(3) 3
(4) 4
(5) 5

Answer: 1
Since $f(x)$ is continuous at $x=0, e^{0}=1=c$.
Since $f(x)$ is differentiable at $x=0, a=-b$. Hence $a+b+c=1$.
11. [6 Points] Evaluate the following limit

$$
\lim _{n \rightarrow \infty}\left(\frac{n^{3}}{1^{2}+2^{2}+3^{2}+\cdots+n^{2}}\right)
$$

(1) 0 (2) 1 (3) 2 (4) 3 (5) 4

Answer: 4

By the definition of the definite integral, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\frac{1^{2}+2^{2}+3^{2}+\cdots+n^{2}}{n^{3}}\right) \\
& \quad=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\frac{k}{n}\right)^{2}=\int_{0}^{1} x^{2} d x=\frac{1}{3}
\end{aligned}
$$

Hence by taking the reciprocal, the answer is 3 .
12. [6 Points] Suppose that a function $f(x)$ satisfies $\left(x^{2}+1\right) f(x)=x f(x-1)+3$ for every real number x. Find the value of $f(1)$.
(1) 2
(2) 3
(3) 4
(4) 5
(5) 6

Answer: 2
Letting $x=0$, we have $f(0)=3$. Letting $x=1$, we have $2 f(1)=1 \cdot f(0)+3=6$. Hence $f(1)=$ 3.
13. [6 Points] Evaluate $\int_{1}^{2} x \sqrt{x^{2}-1} d x$.
(1) $\sqrt{2}$
(2) $\sqrt{3}$
(3) $2 \sqrt{2}$
(4) $2 \sqrt{3}$
(5) $5 \sqrt{2}$

Answer: 2
Letting $u=x^{2}-1$, we have $d u=2 x d x$. Hence

$$
\begin{aligned}
\int_{1}^{2} x \sqrt{x^{2}-1} d x & =\frac{1}{2} \int_{0}^{2}\left(x^{2}-1\right)^{\frac{1}{2}}(2 x d x) \\
& =\frac{1}{2} \int_{0}^{3} \sqrt{u} d u=\left[\frac{1}{3} u^{\frac{3}{2}}\right]_{0}^{3}=\sqrt{3} .
\end{aligned}
$$

14. [6 Points] Suppose that $\log _{27} \sqrt{a}=\log _{3} b^{2}$ with $a, b>0$. Find the value $\log _{b} a$.
(1) 3 (2) 9
(3) 12
(4) 27
(5) 81

Answer: 3
$\log _{27} \sqrt{a}=\frac{1}{6} \log _{3} a$ and $\log _{3} b^{2}=2 \log _{3} b$. Hence
$\frac{1}{6} \log _{3} a=2 \log _{3} b$. So $\log _{b} a=\frac{\log _{3} a}{\log _{3} b}=12$.

2020-2021 AUT Admission Test
 Mathematics (Sample)

15. [6 Points] Let

$$
\sum_{n=1}^{2020}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{n}=a+b i .
$$

Find the value of $a \times b$.
(1) $-\frac{\sqrt{3}}{2}$
(2) $-\frac{\sqrt{3}}{4}$
(3) $\frac{\sqrt{3}}{4}$
(4) $\frac{\sqrt{3}}{2}$
(5) $\frac{3 \sqrt{3}}{2}$

Answer: 2
Let $a_{n}=\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{n}$. Then we have $\sum_{n=1}^{3} a_{n}=0$, hence $\sum_{n=1}^{2019} a_{n}=0$. Also, $\left(a_{1}\right)^{3}=1$. Hence,

$$
\begin{aligned}
& \sum_{n=1}^{2020}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{n}=a_{2020}=a_{3 \cdot 673+1}=a_{1} \\
= & \left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \text { Hence } a b=-\frac{\sqrt{3}}{4} .
\end{aligned}
$$

16. [6 Points] How many 3 digit natural numbers are such that each digit is either all digits are odd or all digits are even?
(1) 225
(2) 250
(3) 325
(4) 350
(5) 500

Answer: 1
There are $5 \times 5 \times 5=125$ odd such number. As 0 cannot be the first of 3 digit numbers, there are $4 \times$ $5 \times 5=100$ even such numbers. Hence the total number is $125+100=225$.
17. [8 Points] If $f(x)=a x^{4}+b x^{3}+c x^{2}+d x$ satisfies

$$
\lim _{x \rightarrow \infty} \frac{f(x)+f(-x)}{x^{2}}=2,
$$

find the value of $\int_{-1}^{1} f(x) d x$.
(1) $-\frac{1}{2}$
(2) 0
(3) $\frac{1}{2}$
(4) $\frac{2}{3}$
(5) $\frac{3}{4}$

Answer: 4
Let $g(x)=f(x)+f(-x)$. Then $g(x)=2 a x^{4}+$ $2 c x^{2}$ and so $a=0, c=1$. Since $\int_{-1}^{1}\left(b x^{3}+\right.$ $d x) d x=0$, we have $\int_{-1}^{1} f(x) d x=\int_{-1}^{1} x^{2} d x=\frac{2}{3}$.
18. [8 Points] Find the indefinite integral of

$$
\frac{1}{x(\ln x)(\ln \ln x)}
$$

(1) $\ln \ln x \quad$ (2) $\ln \ln \ln x \quad$ (3) $-\frac{1}{\ln \ln x}$
(4) $-\frac{1}{\ln \ln \ln x} \quad$ (5) $-\frac{1}{2(\ln \ln x)^{2}}$

Answer: 2
By letting $u=\ln \ln x$, we have

$$
\int \frac{1}{x(\ln x)(\ln \ln x)} d x=\int \frac{d u}{u}=\ln u=\ln \ln \ln x+\mathrm{C} .
$$

19. [8 Points] Find the slope of the tangent line to the curve $y^{3}=\ln \left(5-x^{2}\right)+2 x y-3$ at $(2,1)$.
(1) $-\frac{1}{2}$
(2) $\frac{1}{2}$
(3) 1
(4) 2
(5) $\frac{5}{2}$

Answer: 4
By implicit differentiation, we have

$$
3 y^{2} \frac{d y}{d x}=-\frac{2 x}{5-x^{2}}+2 y+2 x \frac{d y}{d x}
$$

Hence $\left(3 y^{2}-2 x\right) y^{\prime}=-\frac{2 x}{5-x^{2}}+2 y$. At $(2,1)$, we have $-y^{\prime}=-4+2=-2$. Hence the slope is 2 .
20. [8 Points] Let $f(x)=x^{4}-x^{3}+x^{2}-x+1$ and $g(x)$ be a differentiable function. Let $h(x)=$ $g(f(x))$. If $h^{\prime}(0)=5$, find the value of $g^{\prime}(1)$
(1) -5
(2) -4
(3) -3
(4) -2
(5) -1

Answer: 1
Since $\quad h^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x) \quad, \quad h^{\prime}(0)=$ $g^{\prime}(f(0)) f^{\prime}(0)=g^{\prime}(1) f^{\prime}(0)=5$. As $f^{\prime}(0)=-1$, we have $g^{\prime}(1)=-5$.
21. [8 Points] Find the area of the region bounded by three curves $y=x^{2}$ and $y=\sqrt{x}$
(1) $\frac{1}{12}$
(2) $\frac{1}{6}$
(3) $\frac{1}{4}$
(4) $\frac{1}{3}$
(5) $\frac{1}{2}$

2020-2021 AUT Admission Test
 Mathematics (Sample)

Answer: 4
Two graphs meet at $x=0$ and $x=1$. Also, $\sqrt{x} \geq$ x^{2} for $0 \leq x \leq 1$. Hence the area of the region is given by

$$
\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x=\frac{2}{3}-\frac{1}{3}=\frac{1}{3} .
$$

22. [8 Points] Suppose that a continuous function $f(x)$ satisfies $\left(e^{x}-1\right) f(x)=\sin x+a$ for every real number x. Find the sum $a+f(0)$.
(1) 1
(2) 2
(3) 3
(4) 4
(5) 5

Answer: 1
Letting $x=0$, we have $a=0$. Now, since f is continuous,
$f(0)=\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\sin x}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{\sin x}{x}$.
$\frac{x}{e^{x}-1}=1 \cdot 1=1$. Hence the sum $a+f(0)=1$.
23. [8 Points] Evaluate the following limit.

$$
\lim _{x \rightarrow 0} \frac{\sin x-\tan x}{x^{3}}
$$

(1) -1
(2) $-\frac{1}{2}$
(3) $\frac{1}{2}$
(4) 1
(5) 2

Answer: 2

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin x-\tan x}{x^{3}} & =\lim _{x \rightarrow 0} \frac{\tan x(\cos x-1)}{x^{3}} \\
& =-\lim _{x \rightarrow 0} \frac{\tan x}{x} \cdot \frac{1-\cos x}{x^{2}} \\
& =-\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \cdot \frac{1+\cos x}{1+\cos x} \\
& =-\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2}} \cdot \frac{1}{1+\cos x}=-\frac{1}{2} .
\end{aligned}
$$

24. [8 Points] Let $y=a x+b$ and $y=c x+d$ be two tangent lines to the curve $f(x)=x^{2}+4$ passing through the origin. Find the value of $a c$.
(1) -1
(2) -25
(3) -16
(4) 16
(5) 25

Answer: 3
The tangent line to $y=x^{2}+4$ at $\left(t, t^{2}+\right.$ 4) satisfies $y-t^{2}-4=2 t(x-t)$, that is, $y=2 t x-t^{2}+4$.

As this line pass through the origin, we have $t^{2}-4=$ 0 , hence $t= \pm 2$. Hence $(\pm 2,8)$ are the points of tangency. Hence the tangent lines are $y=-4 x$ and $y=4 x$. Hence $a c=-16$.
25. [8 Points] Suppose that $a+b+c+d=1$ and $a, b, c, d \geq 0$. Find the maximum value of $a b+$ $b c+c d+d a$.
(1) $\frac{1}{10}$
(2) $\frac{1}{8}$
(3) $\frac{1}{6}$
(4) $\frac{1}{4}$
(5) $\frac{1}{2}$

Answer: 4
By arithmetic-geometric mean, $\sqrt{x y} \leq \frac{x+y}{2}$. Hence

$$
\begin{aligned}
& a b+b c+c d+d a=(a+c)(b+d) \\
& \leq\left(\frac{a+b+c+d}{2}\right)^{2}=\frac{1}{4} .
\end{aligned}
$$

The maximum occurs if $a=b=c=d=\frac{1}{4}$.
26. [8 Points] Let $f(x)$ be a differentiable function and $g(x)=\frac{f(x)}{e^{2 x}+1}$. If $f(0)-f^{\prime}(0)=1$, find the value of $g^{\prime}(0)$.
(1) $-\frac{1}{2}$
(2) $-\frac{1}{4}$
(3) -1
(4) $\frac{1}{4} \quad$ (5) $\frac{1}{2}$

Answer: 1
Since $g^{\prime}(x)=\frac{f^{\prime}(x)\left(e^{2 x}+1\right)-2 f(x) e^{2 x}}{\left(e^{2 x}+1\right)^{2}}$, letting $x=0$ we have

$$
g^{\prime}(0)=\frac{2 f^{\prime}(0)-2 f(0)}{(1+1)^{2}}=-\frac{2}{4}=-\frac{1}{2} .
$$

2020-2021 AUT Admission Test Mathematics (Sample)

27. [8 Points] Suppose that a function $y=f(x)$ is differentiable and satisfies

$$
f(x)=3 x^{2}+x \int_{0}^{1} f(x) d x
$$

Find the value of $f(1)$.
(1) 1
(2) 2
(3) 3
(4) 4
(5) 5

Answer: 5
Let $k=\int_{0}^{1} f(x) d x$. Then $f(x)=3 x^{2}+k x$, hence $k=\int_{0}^{1}\left(3 x^{2}+k x\right) d x=1+\frac{k}{2}$, so $k=2$. Hence $f(x)=3 x^{2}+2 x$ and $f(1)=5$.

< Short answer questions >

28. [6 Points] Evaluate the following sum.

$$
\sum_{n=1}^{30}(-1)^{n} n^{2}
$$

Answer: 465

$$
\begin{gathered}
\sum_{n=1}^{30}(-1)^{n} n^{2}=\sum_{n=1}^{15}(2 n)^{2}-\sum_{n=1}^{15}(2 n-1)^{2} \\
=\sum_{n=1}^{15}(4 n-1)=4 \cdot \frac{15 \cdot 16}{2}-15 \\
=465
\end{gathered}
$$

29. [8 Points] Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and $A^{9}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Find the value of a.

Answer: 55
Let $A^{n}=\left(\begin{array}{ll}a_{n} & b_{n} \\ c_{n} & d_{n}\end{array}\right)$. Then $a_{1}=b_{1}=c_{1}=1, d_{1}=$ 0 , and $a_{n+1}=a_{n}+b_{n}, b_{n+1}=a_{n}, c_{n+1}=c_{n}+$ $d_{n}, d_{n+1}=b_{n}$.

Hence $a_{n}=1,2,3,5,8,13,21,34,55$ for $n=$ $1,2, \ldots, 9$. So $a=a_{9}=55$.
30. [8 Points] Find the number of all integers $x>0$ for which the limit exists.

$$
\lim _{n \rightarrow \infty}\left(\frac{\left(\log _{5} x\right)^{n}}{3^{n}+2^{n}}\right)
$$

Answer: 125
The limit is equal to

$$
\lim _{n \rightarrow \infty}\left(\frac{\left(\frac{\log _{5} x}{3}\right)^{n}}{\left(\frac{2}{3}\right)^{n}+1}\right)
$$

Since $\left(\frac{2}{3}\right)^{n}$ converges, the limit exists if $\lim \left(\frac{\log _{5} x}{3}\right)^{n}$ converges. Since this is a geometric series, $\lim \left(\frac{\log _{5} x}{3}\right)^{n} \quad$ converges if and only if $-1<\frac{\log _{5} x}{3} \leq$ 1. Hence $-3<\log _{5} x \leq 3$ or $5^{-3}<x \leq 5^{3}=125$ Hence there are 125 such integers.

